Emergent Strength Strata in Cherokee Hiatus Resolution

North East Linguistic Society October 18, 2024

Brian Hsu Caitlin Smith

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Introduction: Cherokee Hiatus Resolution

- Cherokee (Southern Iroquoian; North Carolina, Oklahoma): when morpheme concatenation places two vowels in adjacent positions, hiatus is always repaired
- Several attested hiatus resolution strategies:

Idiosyncrasy in Cherokee Hiatus Resolution

Identity of morphemes each vowel belongs to determines which repair strategy occurs (Montgomery-Anderson 2008):

Idiosyncrasy in Cherokee Hiatus Resolution

Identity of morphemes each vowel belongs to determines which repair strategy occurs (Montgomery-Anderson 2008):

The (Un)predictability of Hiatus Resolution

- Cherokee hiatus resolution is idiosyncratic (i.e. lexically specific), and not predicted by factors previously proposed to condition hiatus repair
- Cherokee hiatus resolution is orderly: from combinations of verbal roots and prefixes in Cherokee, we observe multiple transitive degrees of vowel strength (propensity to surface under hiatus)

Proposal: Gradient Harmonic Grammar

Cherokee hiatus resolution analyzed in Gradient Harmonic Grammar (GHG; Smolensky and Goldrick 2016):

- Input elements are specified for degrees of activity (i.e. presence) between zero and one
- Faithfulness constraints are sensitive to activity contrasts among segments

Result: Multiple degrees of vowel **strength** under hiatus emerge from underlying contrasts in non-integer activity levels

Cherokee Hiatus Resolution in Gradient Harmonic Grammar

Cherokee hiatus resolution exhibits combination of properties best suited to analysis within GHG:

- Deletion/preservation of whole segments
- Multiple levels of idiosyncrasy
- Conditioning by specific combinations of lexical items

Cherokee Verbal Morphophonology

Cherokee Verbal Morphology

Cherokee verbs may surface with a number of prefixes (Montgomery-Anderson 2008):

Prepronominal Prefixes (Optional)	Pronominal Prefixes	Voice (Optional)	Incorp. Noun (Optional)	Verb Root
	Set A (11) Set A anim. obj. (8) Set B (10) Combined nonlocal (6) Combined nonsg. subj. (10)	Middle Reflexive	_	
	Object focus (10)			

Pronominal Prefixes and Verb Roots

Some pronominal prefix + verb root combinations undergo glide insertion:

Others undergo deletion of pronominal prefix vowel:

$$/hi-atit^hask/ \rightarrow [hatit^ha...]$$
 (p.178)
2A -drink:INC

Pronominal and Voice Prefixes

In some combinations, pronominal prefix vowel surfaces and voice prefix vowel deletes:

$$/sk_{\Lambda'}-a_{Ii-/} \rightarrow [sk_{\Lambda'}]...$$
 (p. 306)
2/1PL-MDL-

In other combinations, pronominal prefix vowel deletes and voice prefix vowel surfaces:

/iːtsiː-ali-/
$$\rightarrow$$
 [iːtsal...] (p. 229)
2A.PL-help:MDL

Voice Prefixes and Verb Roots

Verb root vowels surface while voice prefix vowels delete:

/at**a:-o**luhwat^hi:ha/ \rightarrow [a:t**o**luhwa...] (p. 370) MDL- develop:PRC

/ata:- $e:jo:hAsk/ \rightarrow [...te:jo:...]$ (p. 452) MDL- teach:INC/AGT

Emergent Pattern in Hiatus Resolution

Observed hiatus resolution patterns among verbal prefix and root combinations:

Emergent Strength Strata

Based on patterns of hiatus resolution, three strength strata emerge:

Emergent Strength Strata

Based on patterns of hiatus resolution, three strength strata emerge:

Emergent Strength Strata

Based on patterns of hiatus resolution, three strength strata emerge:

The (Un)predictability of Hiatus Resolution

- These strength designations do not align with previously proposed predictors of hiatus repair (cf. Casali 1997, a.o.):
 - Directionality
 - Morphological structure

- Vowel quality
- Vowel quantity
- Successful analysis of Cherokee's multiple hiatus resolution strategies relies on relative strengths of adjacent input vowels

Gradient Harmonic Grammar

Gradient Harmonic Grammar (Smolensky & Goldrick 2016)

- Gradient Harmonic Grammar: variant of Harmonic Grammar with an enriched representational system
- Elements in input representations are specified with non-integer degree of activity (i.e. degree of presence) between 0 and 1.0
- Penalty of each faithfulness constraint violation is proportional to activity of structure that violates it
- Phonological idiosyncrasy arises from contrastive specifications of input activity (Zimmermann 2018; Hsu 2019, 2022)

Lexical Idiosyncrasy in Gradient Harmonic Grammar

Faithfulness constraints are sensitive to input activity values, but markedness constraints are not

		NOCODA	MAX	Dep	
	/p ₁ a ₁ k _{0.75} /	w=1	w=4	w=2	Н
Output codas incur	🖙 a. pak	-1		-0.25 (1-k)	-1.5
full markedness	b. pa		-0.75 (k)		-3
	/p ₁ a ₁ k _{0.25} /				
VIOIATIONS	a. pak	-1		-0.75 (1-k)	-2.5
	🖙 b. pa		-0.25 (k)		-1

Lexical Idiosyncrasy in Gradient Harmonic Grammar

Faithfulness constraints are sensitive to input activity values, but markedness constraints are not

		NoCoda	Max	Dep	
	/p ₁ a ₁ k _{0.75} /	w=1	w=4	w=2	Н
Faithfulness	🖙 a. pak	-1		-0.25 (1-k)	-1.5
violations scaled by-	b. pa		-0.75 (k)		-3
	/p ₁ a ₁ k _{0.25} /				
input activity level	a. pak	-1		−0.75 (1−k)	-2.5
	🖙 b. pa		-0.25 (k)		-1

Lexical Idiosyncrasy in Gradient Harmonic Grammar

The constraint set and constraint weights determine a single **threshold value** that determines whether a coda will surface

Segments above threshold surface; segments below threshold delete

	NoCoda	MAX	Dep	
/p ₁ a_k _{0.75} /	w=1	w=4	w=2	Н
🖙 a. pak	-1		-0.25 (1-k)	-1.5
b. pa		-0.75 (k)		-3
/p ₁ a ₁ k _{0.25} /				
a. pak	-1		-0.75 (1-k)	-2.5
🖙 b. pa		-0.25 (k)		-1

Analysis: Strength Strata in Cherokee

Cherokee Hiatus Resolution in Gradient Harmonic Grammar

- Stronger segments (those more resistant to deletion) represented in GHG with higher levels of input activity than weaker ones
- Cherokee hiatus resolution pattern arises from interaction between faithfulness constraints MAX and DEP and markedness constraint *VV

*VV: Assign a violation for any pair of adjacent vowel root nodes.

 Segments with higher input activity incur relatively high MAX penalties when deleted, and relatively low DEP violations for surfacing

Cherokee Hiatus Resolution in Gradient Harmonic Grammar

- Assumed output candidate set:
 - Faithful surfacing of V_1+V_2 in hiatus
 - Glide insertion

- Deletion of V_1
- Deletion of V_2
- Our sets of constraints and candidates determine a threshold activity value above which vowels pattern as Strong and always surface
- Preservation of both vowels + glide insertion occurs if both vowels are above an input activity threshold of:

$$\frac{2 \times w(\mathsf{DEP})}{w(\mathsf{DEP}) + w(\mathsf{MAX})}$$

Activity Values and Constraint Weights

One set of constraint weights and activity values meeting these criteria:

Activity Values	Constraint Weights
Strong vowels: 1.0	*VV: 5
Medium vowels: 0.67	Max: 4
Weak vowels: 0.33	Dep: 3

Glide Insertion

Glide insertion occurs between two strong vowels:

		*VV	MAX	Dep	
	/i _{1.0} - a _{1.0} /	w=5	w=4	w=3	Н
Hiatus	a.[i a]	1			-5
Glide insertion	☞ b.[i j a]			-1 (j)	-3
Delete V ₂	c.[i]		-1 (a)		-4
Delete V ₁	d.[a]		-1 (i)		-4

Deletion of Weaker Vowel

Strong vowel surfaces, medium vowel deletes:

		*VV	MAX	Dep	
	/i _{1.0} - a _{0.67} /	w=5	w=4	w=3	H
Hiatus	a.[i a]	-1		-0.33 (1-a)	-5.99
Glide insertion	b.[i j a]			-1 (j) +	-3.99
				-0.33 (1-a)	
Delete V ₂	☞ C.[i]		-0.67 (a)		-2.68
Delete V_1	d.[a]		-1 (i)	-0.33 (1-a)	-4.99

Deletion of Weaker Vowel

Medium vowel surfaces; weak vowel deletes:

		*VV	Max	Dep	
	/i _{0.33} - a _{0.67} /	w=5	w=4	w=3	Н
Hiatus	a.[i a]	-1		-0.67 (1-i) +	-8
				−0.33 (1−a)	
Glide insertion	b.[i j a]			-1 (j) +	-6
				-0.67 (1-i) +	
				−0.33 (1−a)	
Delete V ₂	c.[i]		-0.67 (a)	-0.67 (1-i)	-7.37
Delete V ₁	☞ d.[a]		-0.33 (i)	−0.33 (1−a)	-2.31

Theoretical Implications

Gradient Harmonic Grammar and Phonological Idiosyncrasy

GHG is especially suited to analyzing idiosyncratic phonological patterns involving:

- Deletion/preservation of whole segments (Smolensky & Goldrick 2016; Hsu 2019)
- Multiple levels of idiosyncrasy (Hsu & Smith 2023)
- Conditioning by specific combinations of lexical items (Smolensky & Goldrick 2016; Rosen 2016, 2018, 2019)

Deletion and Preservation of Whole Segments

Gradient Harmonic Grammar

Any input element may have gradient activity, including segmental root nodes

 Idiosyncratic deletion/ surfacing of whole segments **Featural Underspecification**

Subsegmental features may be present or absent (Kiparsky 1993; Inkelas 1994)

 Idiosyncratic application of feature-filling rules

X Idiosyncratic deletion/ surfacing of whole segments (Inkelas 2015)

Multiple Levels of Idiosyncrasy

Gradient Harmonic Grammar

Number of possible levels of idiosyncrasy emerges from constraint set and candidate set

 No restriction on number of degrees of idiosyncrasy within a phonological pattern

Featural Underspecification

Subsegmental features may be present or absent (Kiparsky 1993; Inkelas 1994)

X Patterns with >2 degrees of idiosyncrasy

Multiple Levels of Idiosyncrasy

Gradient Harmonic Grammar

Number of possible levels of idiosyncrasy emerges from constraint set and candidate set

 No restriction on number of degrees of idiosyncrasy within a phonological pattern

Indexed Constraints

Each stratum in an idiosyncratic pattern requires a set of indexed constraints (Pater 2000)

 No restriction on number of degrees of idiosyncrasy within a phonological pattern
X Proliferation of indexed constraints and rankings

Conditioning by Combinations of Lexical Items

Gradient Harmonic Grammar

Gradiently active elements cumulatively contribute to candidate harmony

 Patterns conditioned by combinations of elements (Rosen 2016 et seq.) <u>Morpheme-Specific Indices +</u> <u>Ranked Constraints</u>

Morphemes indexed to constraints (Pater 2000) or a cophonology (Orgun 1996)

 Patterns conditioned by combinations of elements
X Relies on local constraint conjunction (Sande 2020)

Conditioning by Combinations of Lexical Items

Gradient Harmonic Grammar

Gradiently active elements cumulatively contribute to candidate harmony

 Patterns conditioned by combinations of elements <u>Morpheme-Specific Indices +</u> <u>Weighted Constraints</u>

Morphemes indexed to constraints (Moore-Cantwell & Pater 2016) or patterns of reweighting (Coetzee & Kawahara 2013, Sande 2020)

 Patterns conditioned by combinations of elements

References

Casali, Roderic F. (1997) Vowel elision in hiatus contexts: which vowel goes? Language, 73(3), 493–533.
Coetzee, Andries W. & Shigeto Kawahara (2013) Frequency biases in phonological variation. Natural Language and Linguistic Theory, 31, 47–89.

- Hsu, Brian (2019) Exceptional prosodification effects revisited in Gradient Harmonic Grammar. *Phonology*, 36(2), 225–263.
- Hsu, Brian (2022) Gradient symbolic representations in Harmonic Grammar. Language and Linguistics Compass, e12473.
- Hsu, Brian & Caitlin Smith (2023) Idiosyncratic Hiatus Resolution: An Argument for Gradient Harmonic Grammar. In *Supplemental Proceedings of the 2022 Annual Meeting on Phonology*. Linguistic Society of America.
- Inkelas, Sharon (1994) The Consequences of Optimization for Underspecification. In J. Beckman (Ed.), *Proceedings of the 25th Annual Meeting of the North East Linguistic Society* (pp. 287–302). Graduate Linguistic Student Association.
- Inkelas, Sharon (2015) Confidence scales: A new approach to derived environment effects. In Y. E. Hsiao & L.-H. Wee (Eds.), *Capturing Phonological Shades* (pp. 45–65). Cambridge Scholars Publishing.

References

- Kiparsky, Paul (1993) Blocking in non-derived environments. In S. Hargus and E. Kaisse (eds.), *Phonetics and Phonology 4: Studies in Lexical Phonology*. Academic Press.
- Montgomery-Anderson, Brad (2008) A Reference Grammar of Oklahoma Cherokee. University of Kansas. Moore-Cantwell, Claire & Joe Pater (2016) Gradient Exceptionality in Maximum Entropy Grammar with Lexically Specific Constraints. Catalan Journal of Linguistics, 15, 53–66.
- Orgun, Cemil (1996) Sign-Based Morphology and Phonology with Special Attention to Optimality Theory. Doctoral Dissertation, University of California Berkeley.
- Pater, Joe (2000) Non-uniformity in English secondary stress: the role of ranked and lexically specific constraints. *Phonology*, 17, 237–274.
- Rosen, Eric (2016) Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar. In E. Clem, G. Bacon, A. Chang, V. Dawson, E. H. Maier, A. Shen, & A. H. Skilton (Eds.), *Proceedings of the 42nd annual meeting of the Berkeley Linguistics Society* (pp. 235–250). Berkeley Linguistics Society.
- Rosen, Eric (2018) Predicting semi-regular patterns in morphologically complex words. *Linguistics Vanguard*, 4(1), 20170037.

References

Rosen, Eric (2019) Evidence for gradient input features from Sino-Japanese compound accent. In K. Hout,A. Mai, A. McCollum, S. Rose, & M. Zaslansky (Eds.), *Proceedings of the 2018 Annual Meeting on Phonology*. Linguistic Society of America.

- Sande, Hannah (2020) Morphologically conditioned phonology with two triggers. *Phonology*, 37(2020), 453–493.
- Smolensky, Paul & Matthew Goldrick (2016) *Gradient Symbolic Representations in Grammar: The case of French Liaison*. Unpublished ms., Johns Hopkins University, Northwestern University.
- Zimmermann, Eva (2018) Being Exceptional is Being Weak: Tonal Exceptions in San Miguel el Grande Mixtec. In G. Gallagher, M. Gouskova, & S. H. Yin (Eds.), *Proceedings of the 2017 Annual Meeting on Phonology*. Linguistic Society of America.