

Deriving Exceptional Phonological Patterns from Contrastive Gestural Strength

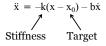
Caitlin Smith & Reed Blaylock University of Southern California

Introduction

- Exceptionality: two versions of the same sound participate in phonological processes in different ways
- Barrow Inupiaq: two versions of /i/ (Kaplan 1981, Archangeli & Pulleyblank 1994)
 - /i₁/: triggers coronal palatalization, resists dorsal assimilation
 - /i₂/: does not trigger coronal palatalization, undergoes dorsal assimilation

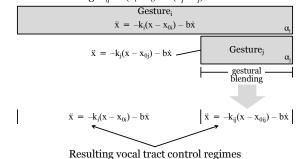
Stem	Coronal Palatalization		Dorsal Assimilation	
iki ₁	iki- <u>∡</u> u	'and wound'	ik i -k	'wound.dual'
savi₁k	savig- <u>ƙ</u> u	'and knife'	savvi-k	'knife.dual'
in <mark>i</mark> 2	in <mark>i</mark> -lu	'and place'	inn <mark>a</mark> -k	'place.DUAL'
kami ₂k	kamig-lu	'and boot'	kamm <u>a</u> -k	'boot.dual'

Proposals

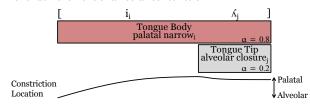

- Patterning of two /i/ vowels in Barrow Inupiaq is due to contrast between dynamically-defined strong and weak gestures
- 2) Contrastiveness of gestural blending strength parameter (α) provides unified account of patterns of apparent exceptionality

Gestures & Gestural Parameters

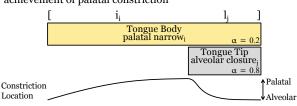
 Gestures (Browman & Goldstein 1986, 1989): dynamicallydefined, goal-based units of phonological representation



- Gestural specifications:
- Target articulatory state (x₀): constriction degree and location
- Stiffness (k): how quickly a gesture's target articulatory state is reached
- Articulators: tongue tip, tongue body, velum, etc.
- Blending strength (a): degree of ability to control vocal tract in case of intergestural competition
- Achievement of gesture's target articulatory state determined by dynamically-defined equation of motion:

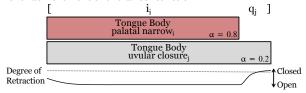

Gestural Strength & Blending

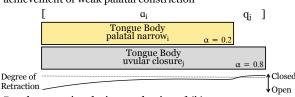
- Concurrently active gestures with conflicting target articulatory states undergo blending (Saltzman & Munhall 1989)
- Blending: weighted averaging of gestures' specifications, with weighting determined by gesture's α value
- Target blending: $x_{0ij} = (x_{0i} \cdot \alpha_i) + (x_{0j} \cdot \alpha_j)$
- Stiffness blending: $k_{ij} = (k_i \cdot \alpha_i) + (k_j \cdot \alpha_j)$



Coronal Palatalization

- Coronal palatalization: result of overlap of coronal consonantal gesture by preceding vowel gesture
- Strong /i/: achievement of strong palatal constriction favored over achievement of alveolar constriction


- Result: palatalization of /l/ to [κ] following strong /i/
- Weak /i/: achievement of alveolar constriction favored over achievement of palatal constriction


Result: no palatalization following weak /i/

Dorsal Assimilation

- Dorsal assimilation: result of overlap of preceding vowel by dorsal consonantal gesture
- Strong /i/: achievement of strong palatal constriction favored over achievement of uvular constriction

- Result: no retraction during production of /i/
- Weak /i/: achievement of uvular constriction favored over achievement of weak palatal constriction

• Result: retraction during production of /i/

Advantages of Gestural Strength Analysis

- \checkmark Contrastive element (strength parameter $\alpha)$ persists from underlying to surface form
- cf. Reliance on derivational opacity with absolute neutralization, which is incompatible with non-derivational frameworks (Kaplan 1981, Archangeli & Pulleyblank 1994)
- √ Unifies patterning of strong and weak /i/ across multiple
 phonological processes
- ✓ Constrains predicted inventory size
- cf. Exceptionality via indexation (e.g., constraint indexation (Pater 2000, 2009)) with accidental indexation of one /i/ to multiple constraints
- Indexation predicts system in which constraints are not all indexed to the same sets of /i/ vowels
- Number of possible indexed vowels in language's phonological inventory = 2ⁿ, where n = number of indexed constraints/rules